Chapters I through V, IX and X could be the core of an advanced, one-semester course in matrix theory including elementary group representation theory. Selected topics from the remaining chapters could more than easily complete a one-year sequence.

This reviewer believes that Integral Matrices will certainly take its place among the very best in mathematical expositions: it deals with interesting material; it is packed with information; and it is intelligible.

Marvin Marcus

Department of Mathematics
University of California, Santa Barbara
Santa Barbara, California 93106

6 [7, 9].-Robert Spira, Table of $e^{\pi V_{n}}$, Michigan State University, East Lansing, Michigan. Ms. of 9 typewritten pp. deposited in the UMT file.

This unpublished table consists of 15D values of $e^{\pi \sqrt{n}}$ for $n=1(1) 200$. Because of the increasing size of the integer parts of these numbers, the corresponding number of significant figures in the tabular entries ranges from 17 to 35 . In the introduction we are informed that this table was calculated in order to test the author's general multiple-precision Fortran subroutines for the elementary functions. Each entry was computed in about four seconds on a CDC 3600 system, using 117S decimal arithmetic.

The author refers to a listing of decimal approximations to six of these numbers in the FMRC Index [1], and he notes his confirmation of terminal-digit errors in two of them, originally announced by Larsen [2].

This table should be of particular interest to number-theorists because of the known relation between the fractional part of $e^{\pi \sqrt{n}}$ and the number of classes of binary quadratic forms of determinant equal to $-n$, as mentioned by D. H. Lehmer [3].

> J. W. W.

1. A. Fletcher, J. C. P. Miller, L. Rosenhead \& L. J. Comrie, An Index of Mathematical Tables, 2nd ed., Addison-Wesley Publishing Co., Reading, Massachusetts, 1962.
2. Math Comp., v. 25, 1971, p. 200, MTE 474.
3. MTAC, v. 1, 1943, pp. 30-31, QR 1.

7 [9].-R. P. Brent, The Distribution of Prime Gaps in Intervals up to 10^{16}, Australian National University, 1973, iv +62 pp . deposited in the UMT file.

These tables are analogous to the Table 2 of Brent's paper [1]. For all primes p such that $N<p<N^{\prime}$, the number of gaps

$$
p_{i+1}-p_{\imath}=g
$$

are tabulated for each $g=2,4,6, \cdots$ that occurs in $\left(N, N^{\prime}\right)$. The estimated total
number of gaps is

$$
P=\int_{N}^{N^{\prime}} d x / \log x
$$

while the number for $g=2$ or for $g=4$ is the well-known

$$
E_{2}=E_{4}=1.3203236317 \int_{N}^{N^{\prime}} d x / \log ^{2} x
$$

For larger g, Brent uses his formulae developed in [1].
The first 21 tables are for the intervals

$$
\begin{array}{ll}
\left(10^{i}, 10^{i}+10^{6}\right), & j=6(1) 15 \\
\left(10^{i}, 10^{i}+10^{7}\right), & j=7(1) 14 \\
\left(10^{6}, 10^{i}\right), & j=7,8,9
\end{array}
$$

For each interval there is listed the first and last prime; the observed population for each g : O_{g}; the expected number E_{g} for $g=2(2) 80$ according to the aforementioned formulas; the expected number for $g>80=P-\sum_{2}^{80} E_{g}$; the normalized differences $\left(O_{v}-E_{v}\right) /\left(E_{v}\right)^{1 / 2}$; and a χ^{2} computed for these 41 degrees of freedom. The χ^{2} vary from 20 to 73 and seem to suggest that, if anything, the distribution agrees "too well" with the expected distribution.

For the remaining four intervals

$$
\begin{array}{ll}
\left(10^{i}, 10^{i}+2 \cdot 10^{7}\right), & j=15,16 \\
\left(10^{i}, 10^{i}+10^{8}\right), & j=14,16
\end{array}
$$

only the empirical data are given, not the expected values or χ^{2}.
There is included a 13-page Fortran and 360 Assembly Language program. One sees that the estimating integrals were computed with a 16 -point Gauss integration. There also is a 3-page text.

The empirical counts in the interval $\left(10^{14}, 10^{14}+10^{8}\right)$ were tabulated earlier by Weintraub [2]. The data agree.
D. S.

1. R. P. Brent, "The distribution of small gaps between successive primes," Math. Comp., v. 28, 1974, pp. 315-324.
2. S. Weintraub, UMT 27, Math. Comp., v. 26, 1972, p. 596.

8 [9].-Edgar Karst, The Third 2500 Reciprocals and their Partial Sums of all Twin Primes $(p, p+2)$ between $(239429,239431)$ and $(393077,393079)$, University Computer Center, The University of Arizona, Tucson, Arizona, February 1973. Ms. of 207 computer sheets deposited in the UMT file.

9 [9].-Daniel Shanks \& Carol Neild, Brun's Constant, Computation and Mathematics Department, Naval Ship Research and Development Center, Bethesda, Maryland, April 1973. Ms. of 67 computer sheets deposited in the UMT file. For a detailed review of these unpublished tables, see pp. 295-296 of this issue.

